Inhibiting the Inflammatory Injury After Myocardial Ischemia Reperfusion With Plasma-Derived Alpha-1 Antitrypsin: A Post Hoc Analysis of the VCU-α1RT Study

    loading  Checking for direct PDF access through Ovid

Abstract

Background:

Despite the benefits of reperfusion in limiting myocardial injury, the infarct size continues to expand after reperfusion because of secondary inflammatory injury. Plasma-derived alpha-1 antitrypsin (AAT) inhibits the inflammatory injury in myocardial ischemia and reperfusion. To explore the effects of plasma-derived AAT on the inflammatory response to ischemia-reperfusion injury, we analyzed time-to-reperfusion and enzymatic infarct size estimates in a post hoc analysis of the VCU-α1RT clinical trial (clinicaltrials.gov NCT01936896).

Methods:

Ten patients with ST-segment elevation acute myocardial infarction (STEMI) were enrolled in an open-label, single-arm treatment study of Prolastin C, plasma-derived AAT, at 60 mg/kg infused intravenously within 12 hours of reperfusion. Biomarkers were measured serially over the first 72 hours, and patients were followed clinically for the occurrence of new-onset heart failure, recurrent MI, or death. Twenty patients with STEMI who had been enrolled in previous randomized trials with identical inclusion/exclusion criteria and had been assigned to placebo served as historical controls.

Results:

Time to percutaneous coronary intervention and time to drug did not significantly differ between groups. AAT-treated patients had a significantly shorter time-to-peak creatine kinase myocardial band (CK-MB) values (525 [480–735] vs. 789 [664–959] minute, P = 0.005) and CK-MB area under the curve (from 1204 [758–2728] vs. 2418 [1551–4289] U·day, P = 0.035), despite no differences in peak CK-MB (123 [30–196] vs. 123 [71–213] U/mL, P = 0.71).

Conclusions:

A single administration of Prolastin C given hours after reperfusion in patients with STEMI led to a significant shorter time to peak and area under the curve for CK-MB, despite similar peak CK-MB values. These preliminary data support the hypothesis that Prolastin C shortens the duration of the ischemia-reperfusion injury in patients with STEMI.

Related Topics

    loading  Loading Related Articles