Dissecting a wheat QTL for yield present in a range of environments: from the QTL to candidate genes

    loading  Checking for direct PDF access through Ovid


Previous studies with 95 bread wheat doubled haploid lines (DHLs) from the cross Chinese Spring (CS)×SQ1 trialled over 24 year×treatment×locations identified major yield quantitative trait loci (QTLs) in homoeologous locations on 7AL and 7BL, expressed mainly under stressed and non-stressed conditions, respectively. SQ1 and CS contributed alleles increasing yield on 7AL and 7BL, respectively. The yield component most strongly associated with these QTLs was grains per ear. Additional results which focus on the 7AL yield QTL are presented here. Trials monitoring agronomic, morphological, physiological, and anatomical traits revealed that the 7AL yield QTL was not associated with differences in flowering time or plant height, but with significant differences in biomass at maturity and anthesis, biomass per tiller, and biomass during tillering. In some trials, flag leaf chlorophyll content and leaf width at tillering were also associated with the QTL. Thus, it is likely that the yield gene(s) on 7AL affects plant productivity. Near-isogenic lines (NILs) for the 7AL yield QTL with CS or SQ1 alleles in an SQ1 background showed the SQ1 allele to be associated with >20% higher yield per ear, significantly higher flag leaf chlorophyll content, and wider flag leaves. Epidermal cell width and distance between leaf vascular bundles did not differ significantly between NILs, so the yield-associated gene may influence the number of cell files across the leaf through effects on cell division. Interestingly, comparative mapping with rice identified AINTEGUMENTA and G-protein subunit genes affecting lateral cell division at locations homologous to the wheat 7AL yield QTL.

Related Topics

    loading  Loading Related Articles