Heavy genetic load associated with the subspecific differentiation of japonica rice (Oryza sativa ssp. japonica L.)

    loading  Checking for direct PDF access through Ovid


Genetic load in the genome of the model species, rice, was genetically dissected by mapping quantitative trait loci (QTLs) affecting the radiosensitivity of 226 recombinant inbred lines (RILs) to γ-ray- and spaceflight-induced radiation. The parents and RILs varied considerably in their radiosensitivity to γ-ray irradiation. A total of 28 QTLs affecting the two index traits, seedling height (SH) and seed fertility (SF), of radiosensitivity were identified. The japonica parent, Lemont, was much more sensitive to γ-ray irradiation than the indica parent, Teqing, and its alleles at almost all QTLs were associated with increased radiosensitivity, suggesting a much higher genetic load in the japonica genome of rice. Six QTLs (QSh2a, QSh2b, QSh5a, QSh7, QSf3b, and QSf10b) were located in the genomic regions particularly sensitive to radiation and thus might represent possible ‘mutation hot spots’ in the japonica genome. Detailed characterization of these genomic regions may shed light on the evolution and subspecific differentiation of rice.

    loading  Loading Related Articles