pH regulation in anoxic rice coleoptiles at pH 3.5: biochemical pHstats and net H+ influx in the absence and presence of NO3−

    loading  Checking for direct PDF access through Ovid

Abstract

During anoxia, cytoplasmic pH regulation is crucial. Mechanisms of pH regulation were studied in the coleoptile of rice exposed to anoxia and pH 3.5, resulting in H+ influx. Germinating rice seedlings survived a combination of anoxia and exposure to pH 3.5 for at least 4 d, although development was retarded and net K+ efflux was continuous. Further experiments used excised coleoptile tips (7–10 mm) in anoxia at pH 6.5 or 3.5, either without or with 0.2 mM NO3−, which distinguished two processes involved in pH regulation. Net H+ influx (μmol g−1 fresh weight h−1) for coleoptiles with NO3− was ∼1.55 over the first 24 h, being about twice that in the absence of NO3−, but then decreased to 0.5–0.9 as net NO3− uptake declined from ∼1.3 to 0.5, indicating reduced uptake via H+–NO3− symports. NO3− reduction presumably functioned as a biochemical pHstat. A second biochemical pHstat consisted of malate and succinate, and their concentrations decreased substantially with time after exposure to pH 3.5. In anoxic coleoptiles, K+ balancing the organic anions was effluxed to the medium as organic anions declined, and this efflux rate was independent of NO3− supply. Thus, biochemical pHstats and reduced net H+ influx across the plasma membrane are important features contributing to pH regulation in anoxia-tolerant rice coleoptiles at pH 3.5.

Related Topics

    loading  Loading Related Articles