High temperature stress and its effect on pollen development and morphological components of harvest index in the C3 model grass Brachypodium distachyon

    loading  Checking for direct PDF access through Ovid


The effect of high temperatures on harvest index (HI) and morphological components that contribute to HI was investigated in two lines (Bd21 and Bd21-3) of Brachypodium distachyon, a C3 grass recognized as a tractable plant, to address critical issues associated with enhancing cereal crop yields in the presence of global climate change. The results demonstrated that temperatures ≥32 °C eliminated HI. Reductions in yield at 32 °C were due primarily to declines in pollen viability, retention of pollen in anthers, and pollen germination, while abortion of microspores by the uninucleate stage that was correlated with abnormal tapetal development resulted in yield failure at 36 °C. Increasing temperatures from 24 to 32 °C resulted in reductions in tiller numbers but had no impact on axillary branch numbers per tiller. Grain developed at 24 and 28 °C primarily in tiller spikes, although spikes on axillary branches also formed grain. Grain quantity decreased in tiller spikes but increased in axillary branch spikes as temperatures rose from 24 to 28 °C. Differential patterns of axillary branching and floret development within spikelets between Bd21 and Bd21-3 resulted in higher grain yield in axillary branches of Bd21-3 at 28 °C. The response of male reproductive development and tiller branching patterns in B. distachyon to increasing temperatures mirrors that in other cereal crops, providing support for the use of this C3 grass in assessing the molecular control of HI in the presence of global warming.

Related Topics

    loading  Loading Related Articles