Arginase activity in frog urinary bladder epithelial cells and its involvement in regulation of nitric oxide production

    loading  Checking for direct PDF access through Ovid


The activity of arginase converting arginine into ornithine and urea is of particular interest among many factors regulating NO production in the cells. It is known that by competing with NO-synthase for common substrate (arginine), arginase can affect NO synthesis. In the present work, properties of arginase from the common frog Rana temporaria L. urinary bladder epithelial cells containing the NO-synthase were characterized, and possible contribution of arginase to regulation of NO production by epithelial cells was studied. It has been shown that the enzyme has temperature optimum in the range of 55–60°C, KM for arginine 23 mM, and Vmax about 10 nmole urea/mg of protein/min, and its activity was efficiently inhibited by (S)-(2-boronoethyl)-L-cysteine (BEC), an inhibitor of arginase, at concentrations from 10−6 to 10−4 M. The comparison of arginase activity in various frog tissues revealed the following pattern: liver > kidney > brain > urinary bladder (epithelium) > heart > testis. The arginase activity in isolated urinary bladder epithelial cells was 3 times higher that in the intact urinary bladder wall. To evaluate the role of arginase in regulation of NO production, the epithelial cells were cultivated in the media L-15 or 199 containing different amounts of arginine; the concentration of NO2, the stable NO metabolites, was de-termined in the cultural fluid after 18–20 h of cell incubation. The vast majority of the produced nitrites are associated with NOS activity, as L-NAME, the NO inhibitor, decreased their accumulation by 77.1% in the L-15 medium and by 80% in the 199 medium. BEC (10−4 M) increased nitrite production by 18.0% ± 2.7% in the L-15 medium and by 24.4% ± 3.5% in the 199 medium (p < 0.05). The obtained data indicate a relatively high activity of arginase in the frog urinary bladder epithelium and its involvement in regulation of NO production.

    loading  Loading Related Articles