Mercury Intrusion Porosimetry and Assessment of Cement-dentin Interface of Anti–washout-type Mineral Trioxide Aggregate

    loading  Checking for direct PDF access through Ovid

Abstract

Introduction:

One of the disadvantages of mineral trioxide aggregate (MTA) is washout (ie, the tendency of freshly prepared cement paste to disintegrate upon early contact with physiological fluids). A novel MTA (MTA Plus; Prevest Denpro, Jammu City, India) exhibits low washout and superior physical properties when mixed with a gel instead of water. When used as a root-end filler, MTA is in contact with both bone and root dentin. This study aimed to investigate the porosity and interfacial characteristics of the novel MTA mixed with water or antiwashout gel.

Methods:

Porosity was evaluated after 1 or 28 days of immersion in Hank's balanced salt solution using mercury intrusion porosimetry. The root dentin to material interface was investigated using a scanning electron microscope and energy-dispersive X-ray spectroscopy complete with line scans and elemental maps.

Results:

Anti–washout-type MTA Plus was found to have lower initial porosity than MTA Plus mixed with water although this trend was reversed after 28 days of immersion in physiological fluid. Both materials exhibited good marginal adaptation. The diffusion of silicon, calcium, and phosphorus across the cement/dentin interface was observed.

Conclusions:

MTA Plus mixed with antiwashout gel was found to have lower initial porosity than MTA Plus mixed with water. Both materials exhibited good marginal adaptation and the diffusion of silicon, calcium, and phosphorous across the cement/dentin interface. Thus, the anti–washout-type MTA can be considered to be a suitable substitute for ordinary MTA in all its indications.

Related Topics

    loading  Loading Related Articles