More Than a Filter: Feature-Based Attention Regulates the Distribution of Visual Working Memory Resources

    loading  Checking for direct PDF access through Ovid

Abstract

Across 2 experiments we revisited the filter account of how feature-based attention regulates visual working memory (VWM). Originally drawing from discrete-capacity (“slot”) models, the filter account proposes that attention operates like the “bouncer in the brain,” preventing distracting information from being encoded so that VWM resources are reserved for relevant information. Given recent challenges to the assumptions of discrete-capacity models, we investigated whether feature-based attention plays a broader role in regulating memory. Both experiments used partial report tasks in which participants memorized the colors of circle and square stimuli, and we provided a feature-based goal by manipulating the likelihood that 1 shape would be probed over the other across a range of probabilities. By decomposing participants’ responses using mixture and variable-precision models, we estimated the contributions of guesses, nontarget responses, and imprecise memory representations to their errors. Consistent with the filter account, participants were less likely to guess when the probed memory item matched the feature-based goal. Interestingly, this effect varied with goal strength, even across high probabilities where goal-matching information should always be prioritized, demonstrating strategic control over filter strength. Beyond this effect of attention on which stimuli were encoded, we also observed effects on how they were encoded: Estimates of both memory precision and nontarget errors varied continuously with feature-based attention. The results offer support for an extension to the filter account, where feature-based attention dynamically regulates the distribution of resources within working memory so that the most relevant items are encoded with the greatest precision.

Related Topics

    loading  Loading Related Articles