Supertree analyses of the roles of viviparity and habitat in the evolution of atherinomorph fishes

    loading  Checking for direct PDF access through Ovid

Abstract

Using supertree phylogenetic reconstructions, we investigate how livebearing and freshwater adaptations may have shaped evolutionary patterns in the Atherinomorpha, a large clade (≈1500 extant species) of ray-finned fishes. Based on maximum parsimony reconstructions, livebearing appears to have evolved at least four times independently in this group, and no reversions to the ancestral state of oviparity were evident. With respect to habitat, at least five evolutionary transitions apparently occurred from freshwater to marine environments, at least two transitions in the opposite direction, and no clear ancestral state was identifiable. All viviparous clades exhibited more extant species than their oviparous sister taxa, suggesting that transitions to viviparity may be associated with cladogenetic diversification. Transitions to freshwater were usually, but not invariably associated with increased species richness, but the trend was, overall, not significant among sister clades. Additionally, we investigated whether livebearing and freshwater adaptations are currently associated with elevated risks of extinction as implied by species' presence on the 2004 IUCN Red List. Despite being correlated with decreased brood size, livebearing has not significantly increased extinction risk in the Atherinomorpha. However, freshwater species were significantly more likely than marine species to be listed as endangered.

Related Topics

    loading  Loading Related Articles