A Nonsynonymous Change in Adhesion G Protein–Coupled Receptor L3 Associated With Risk for Equine Degenerative Myeloencephalopathy in the Caspian Horse

    loading  Checking for direct PDF access through Ovid

Abstract

Equine degenerative myeloencephalopathy (EDM), a neurological disease of young horses, causes progressive development of symmetric ataxia predominantly in the pelvic limbs. Equine degenerative myeloencephalopathy is likely inherited and with no known treatment affected horses frequently need euthanasia. Alpha-tocopherol deficiency during early life appears to contribute to the phenotype. This study sought to identify any genetic variants correlated with EDM in Caspian foals. Two half-sibling EDM-diagnosed cases were genotyped at 52,063 loci and evaluated by the Autozygosity by Difference statistic. Additional horses not affected by EDM were used for genetic comparison to identify regions unique to the case phenotype. The associated region on chromosome 3 contains only one gene encoding adhesion G protein–coupled receptor L3 (ADGRL3). Adhesion G protein–coupled receptor L3 is a member of the latrophilin subfamily of G protein–coupled receptors and may contribute to attention deficit/hyperactivity disorder in humans and hyperactive motor function in mice and zebrafish. Analysis of the predicted coding regions for Equine ADGRL3 in affected horses revealed a nonsynonymous single nucleotide polymorphism at Chr3:71,917,591 bp. Caspian and Caspian cross-relatives (n = 81) of the two initial cases and unrelated horses from similar breeds (n = 130, including Arabians, American Miniatures, and Shetlands) possessed this allele at 5% frequency, with no homozygotes observed within the non-Caspian breeds. This study suggests that a polymorphism in ADGRL3 could contribute to a genetic predisposition to Caspian horse EDM.

Related Topics

    loading  Loading Related Articles