Statistical modeling of the spatial variability of environmental noise levels in Montreal, Canada, using noise measurements and land use characteristics

    loading  Checking for direct PDF access through Ovid

Abstract

The availability of noise maps to assess exposure to noise is often limited, especially in North American cities. We developed land use regression (LUR) models for LAeq24h, Lnight, and Lden to assess the long-term spatial variability of environmental noise levels in Montreal, Canada, considering various transportation noise sources (road, rail, and air). To explore the effects of sampling duration, we compared our LAeq24h levels that were computed over at least five complete contiguous days of measurements to shorter sampling periods (20 min and 24 h). LUR models were built with General Additive Models using continuous 2-min noise measurements from 204 sites. Model performance (adjusted R2) was 0.68, 0.59, and 0.69 for LAeq24h, Lnight, and Lden, respectively. Main predictors of measured noise levels were road-traffic and vegetation variables. Twenty-minute non-rush hour measurements corresponded well with LAeq24h levels computed over 5 days at road-traffic sites (bias: -0.7 dB(A)), but not at rail (-2.1 dB(A)) nor at air (-2.2 dB(A)) sites. Our study provides important insights into the spatial variation of environmental noise levels in a Canadian city. To assess long-term noise levels, sampling strategies should be stratified by noise sources and preferably should include 1 week of measurements at locations exposed to rail and aircraft noise.

Related Topics

    loading  Loading Related Articles