Mineral Density and Penetration Strength of the Subchondral Bone Plate of the Talar Dome: High Correlation and Specific Distribution Patterns

    loading  Checking for direct PDF access through Ovid

Abstract

The subchondral bone plate plays an important role in stabilizing the osteochondral joint unit and in the pathomechanism of osteochondral lesions and osteoarthritis. The objective of the present study was to measure the mineral density distribution and subchondral bone plate penetration strength of the talar dome joint facet to display and compare the specific distribution patterns. Ten cadaver specimens were used for computed tomography (CT) scans, from which densitograms were derived using CT-osteoabsorptiometry, and for mechanical indentation testing from which the penetration strength was obtained. Our results showed 2 different distribution patterns for mineral density and penetration strength. Of the 10 specimens, 6 (60%) showed bicentric maxima (anteromedially and anterolaterally), and 4 (40%) showed a monocentric maximum (either anteromedially or anterolaterally). A highly significant correlation (p < .0001) for both methods confirmed that the mineral density relied on local load characteristics. In conclusion, the biomechanical properties of the subchondral bone plate of the talar dome joint facet showed specific distribution patterns. CT-osteoabsorptiometry is a reliable method to display the mineral density distribution noninvasively. We recommend CT-osteoabsorptiometry for noninvasive analysis of the biomechanical properties of the subchondral bone plate in osteochondral joint reconstruction and the prevention and treatment of osteoarthritis and osteochondral lesions.

Related Topics

    loading  Loading Related Articles