Interactions of Nile Blue with Micelles, Reverse Micelles and a Genomic DNA

    loading  Checking for direct PDF access through Ovid

Abstract

In this contribution we report studies on the nature of binding of a small ligand/drug Nile blue (NB) with sodium dodecyl sulfate (SDS) micelles, bis-(2-ethylehexyl) sulfosuccinate (AOT)/isooctane reverse micelles (RM) and a genomic DNA extracted from Salmon sperm. With detailed steady state and picosecond resolved optical spectroscopic techniques, we examined the fluorescence quenching of the ligand upon complexation with the SDS monomers and DNA. Polarization analyzed picosecond-resolved fluorescence measurements reveal geometrical restriction on the probe in SDS micelles, AOT-RM and DNA. Steady state and time resolved studies on the probe in nanocages of AOT RM with various degrees of hydration (w0) reveal the existence of NB as two distinct species namely, neutral and cationic. This study confirms that the emission of NB in aqueous micelles and DNA solution is due to the cationic form of the drug. Our experiments clearly identified non-specific electrostatic and intercalative modes of interaction of the probe with the DNA at lower and higher DNA concentrations respectively. The nature of binding of NB in presence of the DNA and SDS micelles reveals that the binding affinity of the probe is higher with the micelles than with the DNA. The complex rigidity of NB with DNA and its fluorescence quenching with DNA elucidate a strong recognition mechanism between NB and DNA.

Related Topics

    loading  Loading Related Articles