A Duality Theory for a Class of Generalized Fractional Programs

    loading  Checking for direct PDF access through Ovid

Abstract

In generalized fractional programming, one seeks to minimize the maximum of a finite number of ratios. Such programs are, in general, nonconvex and consequently are difficult to solve. Here, we consider a particular case in which the ratio is the quotient of a quadratic form and a positive concave function. The dual of such a problem is constructed and a numerical example is given.

Related Topics

    loading  Loading Related Articles