A Branch-and-Bound Approach for Solving a Class of Generalized Semi-infinite Programming Problems

    loading  Checking for direct PDF access through Ovid

Abstract

A nonconvex generalized semi-infinite programming problem is considered, involving parametric max-functions in both the objective and the constraints. For a fixed vector of parameters, the values of these parametric max-functions are given as optimal values of convex quadratic programming problems. Assuming that for each parameter the parametric quadratic problems satisfy the strong duality relation, conditions are described ensuring the uniform boundedness of the optimal sets of the dual problems w.r.t. the parameter. Finally a branch-and-bound approach is suggested transforming the problem of finding an approximate global minimum of the original nonconvex optimization problem into the solution of a finite number of convex problems.

Related Topics

    loading  Loading Related Articles