Genetic and environmental determinants of longitudinal stability of arterial stiffness and wave reflection: a twin study

    loading  Checking for direct PDF access through Ovid

Abstract

Background:

We aimed at evaluating the impact of genetic and environmental factors on longitudinal changes in aortic pulse wave velocity (aPWV) and aortic augmentation index (aAIx).

Method:

Three hundred and sixty-eight Italian and Hungarian adult twins (214 monozygotic, 154 dizygotic) underwent repeated evaluations of aPWV and aAIx (TensioMed Arteriograph). Within-individual/cross-wave, cross-twin/within-wave and cross-twin/cross-wave correlations were calculated; bivariate Cholesky models were fitted to calculate additive genetic (A), shared environmental (C) and unique environmental (E) components.

Results:

For both aPWV and aAIx, cross-twin correlations in monozygotic pairs (r between 0.35 and 0.56) were all significant and always higher than in dizygotic pairs, both at wave 1 and at wave 2. Heritability and unshared environmental proportion of variance at each wave were substantially time-invariant for aPWV (heritability 0.51, 95% CI 0.36–0.63 at wave 1; 0.49, 95% CI 0.34–0.62 at wave 2), whereas for aAIx, we observed a diminished genetic effect (heritability 0.57, 95% CI 0.45–0.67 at wave 1; 0.37, 95% CI 0.21–0.51 at wave 2). Overlapping genetic factors explained a high proportion (0.88, 95% CI 0.61–1.00) of longitudinal covariance for aPWV, and had a relatively lower impact on aAIx (0.55, 95% CI 0.35–0.70). Genetic correlations of aPWV (r = 0.64, 95% CI 0.42–0.85) and aAIx (r = 0.70, 95% CI 0.52–0.87) between waves were lower than 1, suggesting a potential contribution of novel genetic variance on arterial stiffening.

Conclusion:

Changes in aPWV and aAIx over time are largely genetically determined. Our results might stimulate further studies on genetic and epigenetic factors influencing the process of vascular ageing.

Related Topics

    loading  Loading Related Articles