Why Is Orthostatic Tolerance Lower in Women than in Men? Renal and Cardiovascular Responses to Simulated Microgravity and the Role of Midodrine

    loading  Checking for direct PDF access through Ovid

Abstract

Background

Exposure to microgravity induces cardiovascular deconditioning, manifested by orthostatic intolerance (OI). We assessed the renal, cardioendocrine, and cardiovascular responses of women and men to simulated microgravity to examine the impact of gender on OI.

Methods

Fifteen healthy female and 14 healthy male subjects were given a constant diet for 3 to 5 days, after which they underwent a tilt-stand test (pre-TST) and began 14 to 16 days of head-down tilt bed rest (HDTB), followed by a repeat tilt-stand test (post-TST). Female subjects began HDTB so that the post-TST was at the same time in their menstrual cycle as their pre-TST. Twenty-four-hour urine collections (daily), hormonal measurements, plethysmography, and cardiovascular system identification were performed.

Results

The times to presyncope were significantly different for men and women before (p = .005) and after HDTB (p = .001), with all of the women but only 50% of the men experiencing presyncope during the pre-TST (p = .002) and all of the women but only 64% of the men experiencing presyncope during the post-TST. At baseline, the following differences between women and men were observed: women had higher serum aldosterone levels (p = .02), higher parasympathetic responsiveness (p = .01), lower sympathetic responsiveness (p = .05), and lower venous compliance (p = .05). Several parameters changed with HDTB in both men and women. In a double-blinded randomized trial, midodrine (5 mg orally) or placebo given to female subjects 1 hour before post-TST was ineffective in preventing OI.

Conclusion

In conclusion, the frequency of OI is higher in women than in men and is not modified by midodrine at the dose used. This increased susceptibility is likely secondary to intrinsic basal differences in the activity of volume-mediated parasympathetic and adrenergic systems and in venous tone. Thus, approaches to reduce OI in women are likely to differ from those effective in men.

Related Topics

    loading  Loading Related Articles