SSADH deficiency leads to elevated extracellular GABA levels and increased GABAergic neurotransmission in the mouse cerebral cortex

    loading  Checking for direct PDF access through Ovid

Abstract

Summary

Succinic semialdehyde dehydrogenase (SSADH) deficiency is an inherited disorder in which patients display neurodevelopmental retardation, ataxia, and epileptic seizures. The recently engineered SSADH knock-out (KO) mouse models the severe form of the human disorder. The SSADH enzyme participates in the breakdown of the inhibitory neurotransmitter GABA, and studies have shown increases in brain GABA and downregulation of GABAA receptor β2 subunits in the cerebral cortex of these mice. Here, we used brain slice electrophysiology to investigate the alterations in GABA neurotransmission in SSADH KO mouse cortex. In layer 2/3 pyramidal cells, spontaneous inhibitory postsynaptic currents (IPSCs), reflecting activity of GABAergic synaptic contacts, were normal in SSADH KO mice. Also, IPSCs evoked by electrical single-axon stimulation in KO mice were normal. In contrast, tonic inhibition mediated by presumed extrasynaptic GABAA receptors was strongly increased, indicating significantly raised extracellular GABA levels. The excessive cortical GABAergic neurotransmission may participate in the seizure activity in SSADH deficiency.

Related Topics

    loading  Loading Related Articles