Steroid Cyclophanes as Artificial Cell-surface Receptors. Molecular Recognition and its Consequence in Signal Transduction Behavior

    loading  Checking for direct PDF access through Ovid

Abstract

Steroid cyclophanes, bearing four bile acid moieties covalently placed on a tetraazaparacyclophane skeleton, were designed and synthesized as artificial cell-surface receptors. Guest-binding behavior of the steroid cyclophanes embedded in a bilayer membrane formed with a synthetic peptide lipid was clarified by means of fluorescence and circular dichroism spectroscopy. We found that the steroid cyclophane effectively bound aromatic guests in both bilayer membranes and aqueous solution. In addition, copper(II) ions acted as a guest species for the steroid cyclophane and a competitive inhibitor toward a NADH-dependent lactate dehydrogenase (LDH). On these grounds, we constituted a supramolecular assembly as an artificial signaling system in combination with the steroid cyclophane, a cationic peptide lipid, and LDH. As a consequence, the steroid cyclophane acted as an effective artificial cell-surface receptor being capable of transmitting an external signal to the enzyme in collaboration with copper(II) ions as a signal transmitter.

Related Topics

    loading  Loading Related Articles