Supervised and Reinforcement Evolutionary Learning for Wavelet-based Neuro-fuzzy Networks

    loading  Checking for direct PDF access through Ovid

Abstract

This study presents a wavelet-based neuro-fuzzy network (WNFN). The proposed WNFN model combines the traditional Takagi–Sugeno–Kang (TSK) fuzzy model and the wavelet neural networks (WNN). This study adopts the non-orthogonal and compactly supported functions as wavelet neural network bases. A novel supervised evolutionary learning, called WNFN-S, is proposed to tune the adjustable parameters of the WNFN model. The proposed WNFN-S learning scheme is based on dynamic symbiotic evolution (DSE). The proposed DSE uses the sequential-search-based dynamic evolutionary (SSDE) method. In some real-world applications, exact training data may be expensive or even impossible to obtain. To solve this problem, the reinforcement evolutionary learning, called WNFN-R, is proposed. Computer simulations have been conducted to illustrate the performance and applicability of the proposed WNFN-S and WNFN-R learning algorithms.

Related Topics

    loading  Loading Related Articles