Carbapenem-resistance mechanisms of multidrug-resistant Pseudomonas aeruginosa

    loading  Checking for direct PDF access through Ovid

Abstract

Clonal dissemination of multidrug-resistant Pseudomonas aeruginosa (MDRPA) is a major concern worldwide. The aim of this study was to explore the mechanisms leading to the carbapenem resistance of an MDRPA clone. Isolates were obtained from a surgical wound, sputum, urine and a blood culture. Pulsed-field gel electrophoresis (PFGE) showed high genomic homogeneity of these isolates and confirmed the circulation of an endemic clone belonging to serotype O4. Outer membrane protein (OMP) bands were visualized by SDS-PAGE, meropenem accumulation was measured in a bioassay and integrons were detected by PCR. Efflux pumps were studied for several antimicrobial agents and synergic combinations thereof in the presence or absence of both carbonyl cyanide m-chlorophenylhydrazone (CCCP) and Phe-Arg-β-naphthylamide (PAβN) at final concentrations of 10 and 40 mg l−1, respectively. On OMP electrophoretic profiles, MDRPA showed a reduction of outer membrane porin D (OprD) and PCR demonstrated the presence of a class 1 integron with a cassette encoding aminoglycoside adenyltransferase B (aadB). Meropenem accumulation was slightly higher in bacilli than in the filamentous cells that formed in the presence of antibiotics. Overexpression of the efflux pump MexAB-OprM and a functional MexXY-OprM were detected in all isolates.

Related Topics

    loading  Loading Related Articles