Discontinuous Region Growing Scheme for Preliminary Detection of Tumor in MRCP Images

    loading  Checking for direct PDF access through Ovid

Abstract

Tumors are generally difficult to detect in Magnetic Resonance (MR) images as they can be of varying intensities and do not appear as clear structures on these images. This difficulty is more prominent in MR Cholangiopancreatography (MRCP), which is the MR technology using a special sequence of T2-weighted imaging to identify the biliary tract, pancreatic duct, and gallbladder in the liver region, as MRCP images are more noisy in nature and are acquired for a more focused area with too much flexibility in position orientation for convenient computer-aided diagnosis. Based on the principle that the tumor mass manifests itself as blockage of the biliary tree structure, this paper introduces a technique that uses a region growing algorithm to identify discontinuities in the biliary tree as a means to preliminary detection of a possible tumor, in a fashion similar to the visual observation used by most radiologists in making their preliminary diagnosis. Through the use of appropriate image normalization, watershed segmentation, thresholding, rule-based region growing, and region analysis, the proposed technique is shown in this paper to be successful in identifying MRCP images with liver carcinoma from those with normal liver. Acquisition standardization, interactive image selection, and optimum image orientation will further enhance the accuracy of this proposed scheme for use in aiding clinical diagnosis at medical institutions.

Related Topics

    loading  Loading Related Articles