High second harmonic generation signal from muscles and fascia pig's muscles using the two-photon laser scanning microscope

    loading  Checking for direct PDF access through Ovid

Abstract

I have provided update to our two photon laser scanning microscope by adding new technique which enables us to simultaneously measured the second harmonic generation signals in the forward and backward directions; in the meantime, one can measure the two photon excitations fluorescence if the materials produce fluorescence. In the present work, the fascia muscles, muscles of pig and pig's skin were used. I found that these materials produced high second harmonic generation signal in both directions. These measurements show that the second harmonic generation strongly depends on the state of the polarization of the laser light and the orientation of the dipole moment in the molecules that interact with the laser light. It is therefore advantageous to control the laser's state of polarization, to maximize second harmonic generation. The novelty of this work is to establish new multi-functional technique by combing three platforms of laser scanning microscopy - the fluorescence microscopy, harmonic generation microscopy and polarizing microscopy in which one can use the second harmonic imaging to investigate the true architecture of the sensitive samples and the samples which do not produce auto-fluorescence. Moreover investigation of the new sample needs to look at all details of the true architecture of the sample. Thereby the sample will be exposed to the laser radiation more than the well-known sample, and that will cause photo-bleaching and photo-damage. Since the second harmonic generation does not undergo from photo-bleaching and photo-damage it will be the promising technique for investigating the sensitive and new samples. Then one can move to acquire fluorescence images after good investigation of the true architecture of the sample by the SH imaging.

Related Topics

    loading  Loading Related Articles