Single amino acid sequence polymorphisms in rat cardiac troponin revealed by top–down tandem mass spectrometry

    loading  Checking for direct PDF access through Ovid

Abstract

Heterotrimeric cardiac troponin (cTn) is a critical component of the thin filament regulatory complex in cardiac muscle. Two of the three subunits, cTnI and cTnT, are subject to post-translational modifications such as proteolysis and phosphorylation, but linking modification patterns to function remains a major challenge. To obtain a global view of the biochemical state of cTn in native tissue, we performed high resolution top–down mass spectrometry of cTn heterotrimers from healthy adult rat hearts. cTn heterotrimers were affinity purified, desalted and then directly subjected to mass spectrometry using a 7 Tesla Thermo LTQ-FT-ICR instrument equipped with an ESI source. Molecular ions for N-terminally processed and acetylated cTnI and cTnT were readily detected as were other post-translationally modified forms of these proteins. cTnI was phosphorylated with a distribution of un-, mono- and bisphosphorylated forms of 41 ± 3%, 46 ± 1%, 13 ± 3%, respectively. cTnT was predominantly monophosphorylated and partially proteolyzed at the Glu29-Pro30 peptide bond. Also observed in high resolution spectra were ‘shadow’ peaks of similar intensity to ‘parent’ peaks exhibiting masses of cTnI+16 Da and cTnT+128 Da, subsequently shown by tandem mass spectrometry (MS/MS) to be single amino acid polymorphisms. Intact and protease-digested cTn subunits were fragmented by electron capture dissociation or collision activated dissociation to localize an Ala/Ser polymorphism at residue 7 of cTnI. Similar analysis of cTnT localized an additional Gln within a three residue alternative splice site beginning at residue 192. Besides being able to provide unique insights into the global state of post-translational modification of cTn subunits, high resolution top–down mass spectrometry readily revealed naturally occurring single amino acid sequence variants including a genetic polymorphism at residue 7 in cTnI, and an alternative splice isoform that affects a putative hinge region around residue 192 of cTnT, all of which co-exist within a single rat heart.

Related Topics

    loading  Loading Related Articles