Different fibre populations distinguished by their calcium transient characteristics in enzymatically dissociated murine flexor digitorum brevis and soleus muscles

    loading  Checking for direct PDF access through Ovid

Abstract

Enzymatically dissociated flexor digitorum brevis (FDB) and soleus fibres from mouse were used to compare the kinetics of electrically elicited Ca2+ transients of slow and fast skeletal muscle fibres, using the fast Ca2+ dye MagFluo4-AM, at 20–22°C. For FDB two Ca2+ transient morphologies, types I (MT-I, 11 fibres, 19%) and II (MT-II, 47 fibres, 81%), were found, the kinetic parameters (amplitude, rise time, half width, decay time, and time constants of decay) being statistically different. For soleus (n = 20) only MT-I was found, with characteristics similar to MT-I from FDB. Correlations with histochemically determined mATPase, reduced nicotinamide adenine dinucleotide diaphorase and α-glycerophosphate dehydrogenase activities, as well as immunostaining and myosin heavy chain electrophoretic analysis of both muscles suggest that signals classified as MT-I may correspond to slow type I and fast IIA fibres while those classified as MT-II may correspond to fast IIX/D fibres. The results point to the importance of Ca2+ signaling for characterization of muscle fibres, but also to its possible role in determining fibre function.

Related Topics

    loading  Loading Related Articles