Detecting the effects of Fabry disease in the adult human brain with diffusion tensor imaging and fast bound-pool fraction imaging

    loading  Checking for direct PDF access through Ovid

Abstract

Background:

To identify quantitative MRI parameters associated with diffusion tensor imaging (DTI) and fast bound-pool fraction imaging (FBFI) that may detect alterations in gray matter and/or white matter in adults with Fabry disease, a lysosomal storage disorder.

Materials and Methods:

Twelve healthy controls (mean age ± standard deviation: 48.0 ± 12.4 years) and 10 participants with Fabry disease (46.7 ± 12.9 years) were imaged at 3.0 Tesla. Whole-brain parametric maps of diffusion tensor metrics (apparent diffusion coefficient [ADC] and fractional anisotropy [FA]) and the bound-pool fraction (f) were acquired. Mean voxel values of parametric maps from regions-of-interest within gray and white matter structures were compared between cases and controls using the independent t-test. Spearman's rho was used to identify associations between parametric maps and age.

Results:

Compared with controls, the left thalamus of Fabry participants had an increase in FA (0.29 ± 0.02 versus 0.33 ± 0.05, respectively; P = 0.030) and a trend toward an increase in ADC (0.73 ± 00.02 versus 0.76 ± 0.03 μm2/s, respectively; P = 0.082). The left posterior white matter demonstrated a reduction in f (10.45 ± 0.37 versus 9.00 ± 1.84%, respectively; P = 0.035), an increase in ADC (0.78 ± 0.04 versus 0.94 ± 0.19 μm2/s, respectively; P = 0.024), and a trend toward a reduction in FA (0.42 ± 0.07 versus 0.36 ± 0.08, respectively; P = 0.052). Among all parameters, only f measured in the left posterior white matter was significantly associated with age in Fabry participants (rho = –0.71; P = 0.022).

Conclusion:

Parameters derived from DTI and FBFI detect Fabry-related changes in the adult human brain, particularly in the posterior white matter where reductions in myelin density as measured by FBFI appear age related. J. MAGN. RESON. IMAGING 2015;42:1611–1622.

Related Topics

    loading  Loading Related Articles