PEG-grafted chitosan nanoparticles as an injectable carrier for sustained protein release

    loading  Checking for direct PDF access through Ovid

Abstract

The development of injectable nanoparticulate “stealth” carriers for protein delivery is a major challenge. The objective of this work was to investigate the possibility of achieving the controlled release of a model protein, insulin, from PEG-grafted chitosan (PEG-g-chitosan) nanoparticles (mean diameter 150–300 nm) prepared by the ion gelation method. Insulin was efficiently incorporated into the nanoparticles, and reached as high as 38%. In vitro release showed that it could control the insulin release by choosing the composition, loading and release temperature. We observed that the composition of the nanoparticle surface (C/O ratio) increased from 2.40 to 3.23, with an increase in the incubation time. Therefore, we concluded that during this time, insulin release from PEG-g-chitosan nanoparticles followed a diffusion mechanism in which erosion was negligible. The experiments also demonstrated that PEG-g-chitosan helped to maintain the natural structure of the protein entrapped in the nanoparticles.

Related Topics

    loading  Loading Related Articles