Preparation and properties of a chitosan-based carrier of corneal endothelial cells

    loading  Checking for direct PDF access through Ovid


A novel chitosan-based membrane that was made of hydroxypropyl chitosan, gelatin and chondroitin sulfate was used as a carrier of corneal endothelial cells. The characteristics of the blend membrane, such as transparency, equilibrium water content, permeability, mechanical properties, protein absorption ability, hydrophilicity and surface morphology, were determined. To study the effects of the membrane on cell attachment and growth, rabbit corneal endothelial cells were cultured on this artificial membrane. The biodegradability and biocompatibility of the blend membrane were in vivo evaluated by its implantation into the muscle of the rats. Glucose permeation results demonstrated that the blend membrane had higher glucose permeability than natural human cornea. Scanning electron microscopy (SEM) analysis of the membranes demonstrated that no fibrils were observed. As a result, the optical transparency of the membrane was as good as the natural human cornea. The average value of tensile strength of the membrane was 13.71 MPa for dry membrane and 1.48 MPa for wet membrane. The value of elongation at break of the wet was 45.64%. The cultured rabbit corneal endothelial cells formed a monolayer on the blend membrane which demonstrated that the membrane was suitable for corneal endothelial cells to attach and grow. In addition, the membranes in vivo showed a good bioabsorption property. The mild symptoms of inflammation at sites of treatment could be resolved as the implant was absorbed by the host. The results of this study demonstrated that the hydroxypropyl chitosan-chondroitin sulfate-gelatin blend membrane can potentially be used as a carrier for corneal endothelial cell transplantation.

Related Topics

    loading  Loading Related Articles