Segregation and Local Structure at Grain Boundaries in SiO2-Doped Tetragonal ZrO2 Polycrystalline Materials

    loading  Checking for direct PDF access through Ovid

Abstract

SiO2 doping in Y2O3 stabilized tetragonal ZrO2 (TZP) materials introduced significant change in mechanical properties around 0.3 wt.% doping level [1]. In order to understand the influence of grain boundary structure and chemistry by doping, high purity undoped and SiO2-doped 3Y-TZP samples were studied using high-resolution and analytical TEM. Typical grain boundary structures are different for the two types of samples, while amorphous film was not observed at most grain boundaries. A new EDS analysis method was introduced to detect the weak Si and Y signals which overlap with the predominent Zr peaks. It revealed that Si segregation to the grain boundary saturates at 12 at./nm2 (or 1.5 monolayer of SiO2) when the SiO2 doping level reached and surpassed 0.3 wt.%. It is the segregated atoms which enhanced the grain boundary diffusivity and therefore altered the deformation mechanism.

Related Topics

    loading  Loading Related Articles