Bistability with Hysteresis in the Activity of Vasopressin Cells

    loading  Checking for direct PDF access through Ovid

Abstract

Magnocellular vasopressin neurones generate distinctive ‘phasic’ patterns of electrical activity during which periods of spiking activity (bursts) alternate with periods of no spikes or occasional spikes. The mechanisms of burst termination in vivo are still not clearly understood. We recorded from single phasic vasopressin cells in vivo and here we show that burst terminations in some phasic cells is preceded by transient increases in activity, consistent with bursts ending as a result of activity-dependent inhibition. We show that extrinsically imposed increases in activity, evoked by brief stimulation of the organum vasculosum of the lamina terminalis, can either trigger bursts if given when a cell is silent, or stop bursts if given when a cell is active. Thus, the magnocellular vasopressin system is a population of independent bistable oscillators. The population as a whole is insensitive to transient changes in input level, whether these are excitatory or inhibitory. The vasopressin cell population thus acts like a ‘low-pass filter’; although brief large changes in input rate have little overall effect, the population responds very effectively to small, sustained changes in input rate by evolving a pattern of discharge activity that efficiently maintains secretion. We note that these filtering characteristics are the opposite of the filtering characteristics that are typically associated with neurones.

Related Topics

    loading  Loading Related Articles