High-Resolution Nerve Ultrasound and Electrophysiological Findings in Restless Legs Syndrome

    loading  Checking for direct PDF access through Ovid

Abstract

BACKGROUND AND PURPOSE:

Restless legs syndrome (RLS) is a multifactorial network disorder of a sensorimotor system extending from dopaminergic and glutamatergic cerebral structures to the spinal neurons and peripheral nerves. The role of peripheral nerve damage in the causality and severity progression for RLS patients remains unclear.

METHODS:

We performed a clinical and epidemiological study on a cohort of 34 RLS patients focusing on RLS risk factors and disease severity. We investigated the peripheral nerves with nerve conduction studies and with high-resolution nerve ultrasound (HRUS).

RESULTS:

In 18 of the 34 patients (mean age 67.4 ± 15 years old), a sensorimotor axonal neuropathy was diagnosed. These patients presented with late-onset RLS were treated with membrane stabilizing agents, whereas no neuropathy predisposing comorbidity could be identified for the majority of them. We could show an inverse correlation between the amplitudes of the tibial nerve for the patients with polyneuropathy and the RLS severity index. Neuropathy patients were characterized by an increase of the cross-sectional area (CSA) of the tibial nerve in the popliteal fossa and by increased intranerve and internerve variability values showing an asymmetry of CSA distribution. This pattern resembles previous studies on diabetic neuropathy.

CONCLUSIONS:

Early diagnosis, characterization, and treatment of neuropathy are increasingly relevant for RLS patients as it correlates with disease severity. HRUS revealed a pattern resembling diabetic neuropathy, which implies a similar pathophysiology with metabolic and ischemic origin of RLS-related axonal neuropathy.

Related Topics

    loading  Loading Related Articles