c-Met-targeted RNA interference inhibits growth and metastasis of glioma U251 cells in vitro

    loading  Checking for direct PDF access through Ovid


Angiogenesis plays an essential role in tumor growth and metastasis and is a promising target for cancer therapy. c-Met, a receptor tyrosine kinase, and its ligand, hepatocyte growth factor (HGF), are critical in cellular proliferation, motility, invasion, and angiogenesis. The present study was designed to determine the role of c-Met in growth and metastasis of glioma U251 cells using RNA interference (RNAi) technology in vitro. We constructed three kinds of shRNA expression vectors aiming at the c-Met gene, then transfected them into glioma U251 cells by lipofectamineTM 2000. The level of c-Met mRNA was investigated by real-time polymerse chain reaction (RT-PCR). The protein expression of c-Met was observed by immunofluoresence staining and western blotting. U251 cell growth and adherence was detected by methyl thiazole tetrazolium assay. The apoptosis of U251 cells was examined with a flow cytometer. The adherence, invasion, and in vitro angiogenesis assays of U251 cells were done. We got three kinds of c-Met specific shRNA expression vectors which could efficiently inhibit the growth and metastasis of U251 cells and the expression of c-Met in U251 cells. RT-PCR, immunofluoresence staining and western blotting showed that inhibition rate for c-Met expression was up to 90%, 79% and 85%, respectively. The expression of c-Met can be inhibited by RNA interference in U251 cells, which can inhibit the growth and metastasis of U251 cell and induce cell apoptosis. These results indicate that RNAi of c-Met can be an effective antiangiogenic strategy for glioma.

Related Topics

    loading  Loading Related Articles