Characterization of the Phosphoinositide-Linked Dopamine Receptor in a Mouse Hippocampal-Neuroblastoma Hybrid Cell Line

    loading  Checking for direct PDF access through Ovid

Abstract

Abstract:

Previous studies have established that dopamine (DA) can stimulate phosphoinositide (PI) metabolism in the CNS and in the periphery. The present study summarizes our attempt to find a cell line that expresses this dopaminergic system. We describe that the stable clonal HN33.11 cell line, established by fusion of mouse hippocampal cells with neuroblastoma cells (N18TG2) that originate from A/J mouse, natively expresses the D1 DA receptor system that couples to PI hydrolysis. In this cell line, 500 μM DA or SKF38393 produced 43 and 75% increases in inositol phosphate (IP) accumulations, respectively. In contrast, noradrenaline or 5-hydroxytryptamine did not affect IP accumulations. The formation of IP that was stimulated by DA or SKF38393 was selectively blocked by the D1 DA receptor antagonist SCH23390 with IC50 values of 13 and 16 μM. This response was not mediated by the D1A DA receptor and was cyclic AMP-independent, as HN33.11 cells did not express this receptor, and DA or SKF38393 was unable to stimulate the formation of cyclic AMP. In Ca2+-free/100 μM EGTA medium, basal IP level was reduced by 31.5%, but SKF38393-stimulated PI hydrolysis was not affected. SKF38393-stimulated IP accumulation was also not affected by pertussis toxin (PTX) treatment (200 ng/ml), suggesting that this dopaminergic response is mediated by PTX-insensitive G proteins. Co-immunoprecipitation studies indicated that in membranes of HN33.11 cells, D1-like binding sites are coupled to Gαq protein. Blockade of SKF38393-induced PI hydrolysis with antiserum against phospholipase C (PLC) isozymes, performed in permeabilized cells, as well as co-immunoprecipitation studies implicate PLCβ3 and PLCβ4 in this dopaminergically mediated PI hydrolysis cascade. The results indicate that HN33.11 cells express a D1-like DA receptor that couples to PLCβ3/4 via Gαq protein. These cells may therefore be a useful model system for investigating this receptor system.

Related Topics

    loading  Loading Related Articles