Slow and selective death of spinal motor neurons : implications for AMPA receptor-mediated excitotoxicity in ALSin vivo: implications for AMPA receptor-mediated excitotoxicity in ALS by intrathecal infusion of kainic acid: implications for AMPA receptor-mediated excitotoxicity in ALS

    loading  Checking for direct PDF access through Ovid

Abstract

Excitotoxicity mediated by α-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid (AMPA) receptors has been proposed to play a major role in the selective death of motor neurons in sporadic amyotrophic lateral sclerosis (ALS), and motor neurons are more vulnerable to AMPA receptor-mediated excitotoxicity than are other neuronal subclasses. On the basis of the above evidence, we aimed to develop a rat model of ALS by the long-term activation of AMPA receptors through continuous infusion of kainic acid (KA), an AMPA receptor agonist, into the spinal subarachnoid space. These rats displayed a progressive motor-selective behavioral deficit with delayed loss of spinal motor neurons, mimicking the clinicopathological characteristics of ALS. These changes were significantly ameliorated by co-infusion with 6-nitro-7-sulfamobenso(f)quinoxaline-2,3-dione (NBQX), but not with D(–)-2-amino-5-phosphonovaleric acid (APV), and were exacerbated by co-infusion with cyclothiazide, indicative of an AMPA receptor-mediated mechanism. Among the four AMPA receptor subunits, expression of GluR3 mRNA was selectively up-regulated in motor neurons but not in dorsal horn neurons of the KA-infused rats. The up-regulation of GluR3 mRNA in this model may cause a molecular change that induces the selective vulnerability of motor neurons to KA by increasing the proportion of GluR2-lacking (i.e. calcium-permeable) AMPA receptors. This rat model may be useful in investigating ALS etiology.

Related Topics

    loading  Loading Related Articles