mGluR1 antagonist decreases tyrosine phosphorylation of NMDA receptor and attenuates infarct size after transient focal cerebral ischemia

    loading  Checking for direct PDF access through Ovid

Abstract

The contribution of metabotropic glutamate receptors to brain injury after in vivo cerebral ischemia remains to be determined. We investigated the effects of the metabotropic glutamate receptor 1 (mGluR1) antagonist LY367385 on brain injury after transient (90 min) middle cerebral artery occlusion in the rat and sought to explore their mechanisms. The intravenous administration of LY367385 (10 mg/kg) reduced the infarct volume at 24 h after the start of reperfusion. As the Gq-coupled mGluR1 receptor is known to activate the PKC/Src family kinase cascade, we focused on changes in the activation and amount of these kinases. Transient focal ischemia increased the amount of activated tyrosine kinase Src and PKC in the post-synaptic density (PSD) at 4 h of reperfusion. The administration of LY367385 attenuated the increases in the amounts of PSD-associated PKCγ and Src after transient focal ischemia. We further investigated phosphorylation of the NMDA receptor, which is a major target of Src family kinases to modulate the function of the receptor. Transient focal ischemia increased the tyrosine phosphorylation of NMDA receptor subunits NR2A and NR2B. Tyrosine phosphorylation of NR2A, but not that of NR2B, in the PSD at 4 h of reperfusion was inhibited by LY367385. These results suggest that the mGluR1 after transient focal ischemia is involved in the activation of Src, which may be linked to the modification of properties of the NMDA receptor and the development of cerebral infarction.

Related Topics

    loading  Loading Related Articles