Excitotoxicity-induced endocytosis mediates neuroprotection by TAT-peptide-linked JNK inhibitor

    loading  Checking for direct PDF access through Ovid

Abstract

Excitotoxicity and cerebral ischemia induce strong endocytosis in neurons, and we here investigate its functional role in neuroprotection by a functional transactivator of transcription (TAT)-peptide, the c-Jun N-terminal kinase (JNK) inhibitor D-JNKI1, against NMDA-excitotoxicity in vitro and neonatal ischemic stroke in P12 Sprague–Dawley rats. In both situations, the neuroprotective efficacy of D-JNKI1 was confirmed, but excessively high doses were counterproductive. Importantly, the induced endocytosis was necessary for neuroprotection, which required that the TAT-peptide be administered at a time when induced endocytosis was occurring. Uptake by other routes failed to protect, and even promoted cell death at high doses. Blocking the induced endocytosis of D-JNKI1 with heparin or with an excess of D-TAT-peptide eliminated the neuroprotection. We conclude that excitotoxicity-induced endocytosis is a basic property of stressed neurons that can target neuroprotective TAT-peptides into the neurons that need protection. Furthermore, it is the main mediator of neuroprotection by D-JNKI1. This may explain promising reports of strong neuroprotection by TAT-peptides without apparent side effects, and warns that the timing of peptide administration is crucial.

J. Neurochem. (2011) 10.1111/j.1471-4159.2011.07535.x

Related Topics

    loading  Loading Related Articles