Zinc transporter-1: a novel NMDA receptor-binding protein at the postsynaptic density

    loading  Checking for direct PDF access through Ovid

Abstract

Zinc (Zn2+) is believed to play a relevant role in the physiology and pathophysiology of the brain. Hence, Zn2+ homeostasis is critical and involves different classes of molecules, including Zn2+ transporters. The ubiquitous Zn2+ transporter-1 (ZNT-1) is a transmembrane protein that pumps cytosolic Zn2+ to the extracellular space, but its function in the central nervous system is not fully understood. Here, we show that ZNT-1 interacts with GluN2A-containing NMDA receptors, suggesting a role for this transporter at the excitatory glutamatergic synapse. First, we found that ZNT-1 is highly expressed at the hippocampal postsynaptic density (PSD) where NMDA receptors are enriched. Two-hybrid screening, coimmunoprecipitation experiments and clustering assay in COS-7 cells demonstrated that ZNT-1 specifically binds the GluN2A subunit of the NMDA receptor. GluN2A deletion mutants and pull-down assays indicated GluN2A(1390–1464) domain as necessary for the binding to ZNT-1. Most importantly, ZNT-1/GluN2A complex was proved to be dynamic, since it was regulated by induction of synaptic plasticity. Finally, modulation of ZNT-1 expression in hippocampal neurons determined a significant change in dendritic spine morphology, PSD-95 clusters and GluN2A surface levels, supporting the involvement of ZNT-1 in the dynamics of excitatory PSD.

Zn2+ transporter-1 (ZNT-1) pumps cytosolic Zn2+ to the extracellular space, but its function in the central nervous system is not fully understood. We show that ZNT-1 interacts with GluN2A-containing NMDA receptors at the glutamatergic synapse. Most importantly, ZNT-1/GluN2A complex is regulated by induction of synaptic plasticity. Modulation of ZNT-1 expression in hippocampal neurons determined a shrinkage of dendritic spines and a reduction of GluN2A surface levels supporting the involvement of ZNT-1 in the dynamics of the excitatory synapse.

Zn2+ transporter-1 (ZNT-1) pumps cytosolic Zn2+ to the extracellular space, but its function in the central nervous system is not fully understood. We show that ZNT-1 interacts with GluN2A-containing NMDA receptors at the glutamatergic synapse. Most importantly, ZNT-1/GluN2A complex is regulated by induction of synaptic plasticity. Modulation of ZNT-1 expression in hippocampal neurons determined a shrinkage of dendritic spines and a reduction of GluN2A surface levels supporting the involvement of ZNT-1 in the dynamics of the excitatory synapse.

Read the Editorial Highlight for this article on page 155.

Related Topics

    loading  Loading Related Articles