P-001 High-Resolution Optical and Angiographic CT Imaging of Flow-Diverter Stents for Assessment of Vessel Wall Apposition

    loading  Checking for direct PDF access through Ovid

Abstract

Introduction

Intracranial placement of flow-diverter (FD) stents provides a safe and effective treatment for aneurysms.1 However, long-term angiographic follow-up is indicated, since in-stent stenosis and late thrombosis as a consequence of poor vessel wall apposition increase the risks of stroke-related complications.1,2 In addition to conventional angiography, high-resolution contrast-enhanced cone-beam CT (VasoCT) may provide improved three-dimensional visualization of stent deployment and apposition.2,3

Introduction

Here we explored the use of VasoCT for the assessment of FD vessel wall apposition in comparison to concurrent optical coherence tomography (OCT) endoscopy. Catheter-based OCT delivers near-infrared images at a spatial resolution in the order of 10–50 μm, which enables superior intravascular tissue and device visualization.4 This work was performed in an experimental sidewall aneurysm model in canines.

Materials and methods

Two sidewall aneurysms were created on each common carotid artery (CCA) in female canines by anastomosis of sections of the detached right external jugular vein, as described before.5 Under fluoroscopic guidance (Allura Xper FD20, Philips, Best, The Netherlands), FD stents (Pipeline Embolization Device, EV3-MTI, Irvine, CA; Surpass, Stryker, Fremont, CA) were placed and apposition was assessed bilaterally using VasoCT, and in the right CCA using OCT (C7 System/Dragonfly Catheter, St Jude Medical, Westford, MA).

Results

Figure 1 shows an example of poor apposition, approximately 7.5 mm proximal to the aneurysm on the right CCA. With OCT (right), the distance between the FD and vessel wall measured 0.39 mm. The vessel diameter in this plane was 3.24–3.53 mm, and the area between the stent and the vessel wall was 15% of the lumen area. A similar distance 0.35 mm could be observed in a 67 μm VasoCT reconstruction (left), although lumen and stent struts are rendered more smoothly as compared to OCT.

Conclusion

Due to its superior in-plane resolution, OCT clearly visualised the distinction between the vessel wall and the FD stent struts. Nevertheless, our example showed that VasoCT enables identification of apposition distances in the order of 0.5mm. Although OCT is clinically used in interventional cardiology, its neurovascular application is currently limited to the experimental setting. Here we showed that OCT can provide a gold-standard for the validation of VasoCT assessments of FD apposition.

Disclosures

K. van der Marel: None. M. Gounis: 1; C; eV3/Covidien, Philips Healthcare, NIH, Silk Road, Stryker Neurovascular. 2; C; Stryker Neurovascular, Codman Neurovascular. R. King: None. A. Wakhloo: 1; C; NIH, Philips Healthcare. 2; C; Stryker Neurovascular. A. Puri: None.

Related Topics

    loading  Loading Related Articles