Differential Expression of Peroxiredoxin Subtypes in Human Brain Cell Types

    loading  Checking for direct PDF access through Ovid

Abstract

The peroxiredoxin (Prx) protein is expressed widely in animal tissues and serves an antioxidant function associated with removal of cellular peroxides. We have cloned two Prx genes and observed differential expression of Prx-I and Prx-II (formerly NKEF-A and NKEF-B) in purified rat brain cell cultures (Sarafian et al. [1998] Mol. Chem. Neuropathol. 34:39–51). We have examined regional and cell-type-specific expression of Prx-I and Prx-II in paraffin sections of human brain using immunohistochemical methods. These studies revealed a clear segregation of expression of these two gene products in different brain cell types. In the cerebral cortex, cerebellum, basal ganglia, substantia nigra, and spinal cord, Prx-I was expressed primarily in astrocytes, while Prx-II was expressed exclusively in neurons. Prx-I was also prominently expressed in ependymal cells and subependymal matrix of substantia nigra and basal ganglia. Prx-II was not expressed at uniform density in all neurons. In general, small neurons such as cerebellar granule neurons displayed little or no staining, while large neurons, such as hippocampal pyramidal and Purkinje neurons were heavily stained. The absence of expression of Prx-I in neurons and the selective expression of Prx-II in large neurons suggest that these antioxidant enzymes serve distinct functional roles that may reflect the different functions and biochemical activities of these cell types. Restricted expression of these genes may also contribute to the selective vulnerability of these cells to a wide variety of neuropathologic conditions. J. Neurosci. Res. 56:206–212, 1999. © 1999 Wiley-Liss, Inc.

Related Topics

    loading  Loading Related Articles