Neural Stem/Progenitor Cell-Laden Microfibers Promote Transplant Survival in a Mouse Transected Spinal Cord Injury Model

    loading  Checking for direct PDF access through Ovid

Abstract

Previous studies have demonstrated that transplantation of neural stem/progenitor cells (NS/PCs) into the lesioned spinal cord can promote functional recovery following incomplete spinal cord injury (SCI) in animal models. However, this strategy is insufficient following complete SCI because of the gap at the lesion epicenter. To obtain functional recovery in a mouse model of complete SCI, this study uses a novel collagen-based microfiber as a scaffold for engrafted NS/PCs. We hypothesized that the NS/PC–microfiber combination would facilitate lesion closure as well as transplant survival in the transected spinal cord. NS/PCs were seeded inside the novel microfibers, where they maintained their capacity to differentiate and proliferate. After transplantation, the stumps of the transected spinal cord were successfully bridged by the NS/PC-laden microfibers. Moreover, the transplanted cells migrated into the host spinal cord and differentiated into three neural lineages (astrocytes, neurons, and oligodendrocytes). However, the NS/PC-laden scaffold could not achieve a neural connection between the rostral end of the injury and the intact caudal area of the spinal cord, nor could it achieve recovery of motor function. To obtain optimal functional recovery, a microfiber design with a modified composition may be useful. Furthermore, combinatorial therapy with rehabilitation and/or medications should also be considered for practical success of biomaterial/cell transplantation-based approaches to regenerative medicine. © 2015 Wiley Periodicals, Inc.

To obtain functional recovery in a mouse model of complete SCI, we used a novel collagen-based microfiber as a scaffold for engrafted NS/PCs. The bundled NS/PC-laden microfibers successfully bridged the transected stumps of the mouse spinal cord, with the migration of transplanted cells into the host spinal cord.

Related Topics

    loading  Loading Related Articles