The cellular composition of the marsupial neocortex

    loading  Checking for direct PDF access through Ovid

Abstract

In the current investigation we examined the number and proportion of neuronal and non-neuronal cells in the primary sensory areas of the neocortex of a South American marsupial, the short-tailed opossum (Monodelphis domestica). The primary somatosensory (S1), auditory (A1), and visual (V1) areas were dissected from the cortical sheet and compared with each other and the remaining neocortex using the isotropic fractionator technique. We found that although the overall sizes of V1, S1, A1, and the remaining cortical regions differed from each other, these divisions of the neocortex contained the same number of neurons, but the remaining cortex contained significantly more non-neurons than the primary sensory regions. In addition, the percent of neurons was higher in A1 than in the remaining cortex and the cortex as a whole. These results are similar to those seen in non-human primates. Furthermore, these results indicate that in some respects, such as number of neurons, the neocortex is homogenous across its extent, whereas in other aspects of organization, such as non-neuronal number and percentage of neurons, there is non-uniformity. Whereas the overall pattern of neuronal distribution is similar between short-tailed opossums and eutherian mammals, short-tailed opossum have a much lower cellular and neuronal density than other eutherian mammals. This suggests that the high neuronal density cortices of mammals such as rodents and primates may be a more recently evolved characteristic that is restricted to eutherians, and likely contributes to the complex behaviors we see in modern mammals. J. Comp. Neurol. 522:2286–2298, 2014. © 2014 Wiley Periodicals, Inc.

The authors used isotropic fractionation to examine the cellular composition of the short-tailed opossum neocortex. Like eutherian mammals, the primary sensory areas contained a higher proportion of neurons than nonsensory areas. However, the opossum cortex had a much lower overall neuronal density than the cortex of eutherian mammals.

Related Topics

    loading  Loading Related Articles