A novel polymer–paclitaxel conjugate based on amphiphilic triblock copolymer

    loading  Checking for direct PDF access through Ovid


A novel amphiphilic polymer–paclitaxel conjugate P(LGG-paclitaxel)-PEG-P(LGG-paclitaxel) has been prepared. It was derived from its parent polymer P(LGG)-PEG-P(LGG), poly{(lactic acid)-co-[(glycolic acid)-alt-(l-glutamic acid)]}-block-poly(ethylene glycol)-block-poly{(lactic acid)-co-[(glycolic acid)-alt-(l-glutamic acid)]}, which was prepared by ring-opening copolymerization of l-lactide (LLA) with (3s)-benzoxylcarbonylethyl-morpholine-2,5-dione (BEMD) in the presence of dihydroxyl PEG with molecular weight of 4600 as a macroinitiator using stannous octoate (Sn(Oct)2) as catalyst, and by subsequent catalytic hydrogenation. It could self-assemble into micelles in an aqueous system with P(LGG-paclitaxel) block in the core and PEG in the shell. ESEM and DLS analysis of the micelles revealed a homogeneous spherical morphology and a unimodal size distribution. In vitro release of paclitaxel from the conjugate micelles showed that its release rate depended on pH value and was higher at lower pH than in neutral condition. In vitro antitumor activity of the paclitaxel conjugate against rat brain glioma C6 cells was evaluated by MTT method. The results showed that the paclitaxel can be released from the conjugate without losing cytotoxicity.

Related Topics

    loading  Loading Related Articles