Biocomposite macroporous cryogels as potential carrier scaffolds for bone active agents augmenting bone regeneration

    loading  Checking for direct PDF access through Ovid


Osteoinduction can be enhanced by combining scaffolds with bone morphogenic protein-2 (BMP-2). However, BMP's are known to also cause bone resorption. This can be controlled using bisphosphonates like zoledronic acid (ZA). In this study, we produced two different scaffolds containing silk-fibroin, chitosan, agarose and hydroxyapatite (HA) with and without bioactive glass. The aims of the study were to fabricate, physico-chemically characterize and evaluate the carrier properties of the scaffolds for recombinant human BMP-2 (rhBMP-2) and ZA. Scaffolds were characterized using various methods to confirm their composition. During cell-material interactions, both scaffolds exhibited gradual but sustained proliferation of both C2C12 and MSCs for a period of 6 weeks with augmentative effects on their phenotype indicated by elevated levels of alkaline phosphatase (ALP) cuing towards osteogenic differentiation. In-vitro effects of rhBMP-2 and ZA contained within both the scaffolds was assessed on MC3T3 preosteoblast cells and the results show a significant increase in the ALP activity of the cells seeded on scaffolds with rhBMP-2. Further, the scaffold with both HA and bioactive glass was considered for the animal study. In-vitro, this scaffold released nearly 25% rhBMP-2 in 21-days and the addition of ZA did not affect the release. In the animal study, the scaffolds were combined with rhBMP-2 and ZA, rhBMP-2 or implanted alone in an ectopic muscle pouch model. Significantly higher bone formation was observed in the scaffold loaded with both rhBMP-2 and ZA as seen from micro-computed tomography, histomorphometry and energy dispersive X-ray spectroscopy.

Related Topics

    loading  Loading Related Articles