A simple and highly effective catalytic nanozyme scavenger for organophosphorus neurotoxins

    loading  Checking for direct PDF access through Ovid


A simple and highly efficient catalytic scavenger of poisonous organophosphorus compounds, based on organophosphorus hydrolase (OPH, EC, is produced in aqueous solution by electrostatic coupling of the hexahistidine tagged OPH (His6-OPH) and poly(ethylene glycol)-b-poly(l-glutamic acid) diblock copolymer. The resulting polyion complex, termed nano-OPH, has a spherical morphology and a diameter from 25 nm to 100 nm. Incorporation of His6-OPH in nano-OPH preserves catalytic activity and increases stability of the enzyme allowing its storage in aqueous solution for over a year. It also decreases the immune and inflammatory responses to His6-OPH in vivo as determined by anti-OPH IgG and cytokines formation in Sprague Dawley rats and Balb/c mice, respectively. The nano-OPH pharmacokinetic parameters are improved compared to the naked enzyme suggesting longer blood circulation after intravenous (iv) administrations in rats. Moreover, nano-OPH is bioavailable after intramuscular (im), intraperitoneal (ip) and even transbuccal (tb) administration, and has shown ability to protect animals from exposure to a pesticide, paraoxon and a warfare agent, VX. In particular, a complete protection against the lethal doses of paraoxon was observed with nano-OPH administered iv and ip as much as 17 h, im 5.5 h and tb 2 h before the intoxication. Further evaluation of nano-OPH as a catalytic bioscavenger countermeasure against organophosphorus chemical warfare agents and pesticides is warranted.

Related Topics

    loading  Loading Related Articles