First in vivo MRI study on theranostic dendrimersomes

    loading  Checking for direct PDF access through Ovid

Abstract

Amphiphilic Janus-dendrimers are able to self-assemble into nanosized vesicles named dendrimersomes. We recently synthesized the 3,5-C12-EG-(OH)4 dendrimer that generates dendrimersomes with very promising safety and stability profiles, that can be loaded with different contrast agents for in vivo imaging. In this contribution, nanovesicles were loaded with both the Magnetic Resonance Imaging (MRI) reporter GdDOTAGA(C18)2 and the glucocorticoid drug Prednisolone Phosphate (PLP), in order to test their effective potential as theranostic nanocarriers on murine melanoma tumour models. The incorporation of GdDOTAGA(C18)2 into the membrane resulted in dendrimersomes with a high longitudinal relaxivity (r1 = 39.1 mM− 1 s− 1, at 310 K and 40 MHz) so that, after intravenous administration, T1-weighted MRI showed a consistent contrast enhancement in the tumour area. Furthermore, the nanovesicles encapsulated PLP with good efficiency and displayed anti-tumour activity both in vitro and in vivo, thus enabling their practical use for biomedical theranostic applications.

Graphical abstract

Dendrimersomes loaded with both the MRI reporter GdDOTAGA(C18)2 and the glucocorticoid drug Prednisolone Phosphate (PLP) displayed in vitro and in vivo efficacy in the treatment of murine melanoma.

Related Topics

    loading  Loading Related Articles