Enhanced exercise-induced muscle damage and muscle protein degradation in streptozotocin-induced type 2 diabetic rats

    loading  Checking for direct PDF access through Ovid

Abstract

Aims/Introduction:

The effects of 5-day voluntary exercise on muscle damage and muscle protein degradation were investigated in a streptozotocin-induced rat model of moderately glycemic, uncontrolled, type 2 diabetes.

Materials and Methods:

In the preliminary experiment, an oral glucose tolerance (1.0 g/kg) test was carried out to confirm the development of diabetes 3 days after streptozotocin treatment (30 mg/kg). In the genuine experiment, rats were divided into four groups: (i) non-diabetic rats without exercise (controls); (ii) non-diabetic rats with exercise; (iii) diabetic rats without exercise; and (iv) diabetic rats with exercise. After 5 days of voluntary wheel running exercise, blood and 24-h urine were collected, and levels of serum creatine kinase, a marker of muscle damage, and 24-h urinary excretion of muscle degradation products were determined.

Results:

Type 2 diabetic rats with insulin deficiency that exercised had higher serum creatine kinase and greater urinary excretions of creatinine, urea nitrogen and 3-methylhistidine compared with both type 2 diabetic rats with insulin deficiency and non-diabetic rats that did not exercise. However, there were no differences in serum creatine kinase and urinary excretions of creatinine, urea nitrogen and 3-methylhistidine between non-diabetic rats that did and did not exercise.

Conclusions:

These findings suggest that muscle damage is induced and muscle protein degradation are enhanced by chronic moderate exercise in moderately glycemic uncontrolled type 2 diabetic rats with insulin deficiency at an intensity level of exercise that does not affect muscle damage and muscle protein degradation in non-diabetic rats. (J Diabetes Invest, doi: 10.1111/j.2040–1124.2011.00130.x, 2011)

Related Topics

    loading  Loading Related Articles