Moderate increase of reactive oxygen species triggers meiotic resumption in rat follicular oocytes

    loading  Checking for direct PDF access through Ovid

Abstract

Aim:

The mammalian ovary generates reactive oxygen species (ROS) on an extraordinary scale; however, the role of ROS during meiotic cell cycle progression in follicular oocytes remains poorly understood. The present study was aimed to determine whether a moderate increase of ROS level in the ovary is beneficial for meiotic resumption from diplotene arrest in follicular oocytes.

Methods:

Cumulus oocyte complexes were collected from the ovaries of female rats that had been treated with either: (i) pregnant mare's serum gonadotrophin; or (ii) pregnant mare's serum gonadotrophin + human chorionic gonadotrophin. We analyzed morphological changes, ROS and hydrogen peroxide levels, catalase activity, 3′,5′-cyclic adenosine monophosphate and 3′,5′-cyclic guanosine monophosphate levels, Thr14/Tyr15, Th-161, total cyclin-dependent kinase 1 (Cdk1) and cyclin B1 levels.

Results:

Human chorionic gonadotrophin treatment induced meiotic resumption from diplotene arrest and extrusion of first polar body in cumulus oocyte complexes collected from ovaries and cultured for 3 h in vitro. Meiotic resumption from diplotene arrest was associated with increased ROS and hydrogen peroxide levels but decreased 3′,5′-cyclic adenosine monophosphate as well as 3′,5′-cyclic guanosine monophosphate levels. The reduced cyclic nucleotide levels were associated with decreased Thr161 phosphorylated Cdk1 and cyclin B1 level but increased Thr14/Tyr15 phosphorylated Cdk1 level leading to maturation promoting factor destabilization. Destabilized maturation-promoting factor triggered meiotic resumption from diplotene arrest and progression to metaphase-I as well as metaphase-II stage in follicular oocytes.

Conclusion:

Our findings suggest that a moderate increase of ROS in the ovary is beneficial for meiotic resumption from diplotene arrest and extrusion of first polar body in follicular oocytes.

Related Topics

    loading  Loading Related Articles