Tumor Necrosis Factor (TNF) Receptor Superfamily Member 1b on CD8+ T Cells and TNF Receptor Superfamily Member 1a on Non-CD8+ T Cells Contribute Significantly to Upper Genital Tract Pathology Following Chlamydial Infection

    loading  Checking for direct PDF access through Ovid

Abstract

Background. We demonstrated previously that tumor necrosis factor α (TNF-α)–producing Chlamydia-specific CD8+ T cells cause oviduct pathological sequelae.

Methods. In the current study, we used wild-type C57BL/6J (WT) mice with a deficiency in genes encoding TNF receptor superfamily member 1a (TNFR1; TNFR1 knockout [KO] mice), TNF receptor superfamily member 1b (TNFR2; TNFR2 KO mice), and both TNFR1 and TNFR2 (TNFR1/2 double KO [DKO] mice) and mix-match adoptive transfers of CD8+ T cells to study chlamydial pathogenesis.

Results. TNFR1 KO, TNFR2 KO, and TNFR1/2 DKO mice displayed comparable clearance of primary or secondary genital Chlamydia muridarum infection but significantly reduced oviduct pathology, compared with WT animals. The Chlamydia-specific total cellular cytokine response in splenic and draining lymph nodes and the antibody response in serum were comparable between the WT and KO animals. However, CD8+ T cells from TNFR2 KO mice displayed significantly reduced activation (CD11a expression and cytokine production), compared with TNFR1 KO or WT animals. Repletion of TNFR2 KO mice with WT CD8+ T cells but not with TNFR2 KO CD8+ T cells and repletion of TNFR1 KO mice with either WT or TNFR1 KO CD8+ T cells restored oviduct pathology to WT levels in both KO groups.

Conclusions. Collectively, these results demonstrate that TNFR2-bearing CD8+ T cells and TNFR1-bearing non-CD8+ T cells contribute significantly to oviduct pathology following genital chlamydial infection.

Related Topics

    loading  Loading Related Articles