The Cytolethal Distending Toxin Subunit CdtB of Helicobacter Induces a Th17-related and Antimicrobial Signature in Intestinal and Hepatic Cells In Vitro

    loading  Checking for direct PDF access through Ovid


Enterohepatic Helicobacter species are associated with several digestive diseases. Helicobacter pullorum is an emerging human foodborne pathogen, and Helicobacter hepaticus is a mouse pathogen; both species are associated with intestinal and/or hepatic diseases. They possess virulence factors, such as cytolethal distending toxin (CDT). Data indicate that CDT may be involved in chronic inflammatory responses, via its active subunit, CdtB. The proinflammatory properties of the CdtB of H. pullorum and H. hepaticus were assessed on human intestinal and hepatic epithelial cells in vitro. Interleukin 8 expression was evaluated by using wild-type strains and their corresponding CdtB isogenic mutants and by delivering CdtB directly into the cells. Nuclear factor κB nuclear translocation and transcriptomic characteristics in response to CdtB were also evaluated. The CdtB of these Helicobacter species induced nuclear factor κB nuclear translocation and exhibited proinflammatory properties, mainly the expression of T-helper type 17–related genes and genes encoding antimicrobial products also involved in cancer. The Histidine residue in position 265 of the CdtB catalytic site appeared to play a role in the regulation of most of these genes. As for flagellin or lipopolysaccharides, CdtB also induced expression of inflammation-associated genes related to antimicrobial activity.

Related Topics

    loading  Loading Related Articles