Osteoclast precursor differentiation by MCPIP via oxidative stress, endoplasmic reticulum stress, and autophagy

    loading  Checking for direct PDF access through Ovid

Abstract

Osteoclasts (OCs) are responsible for bone resorption in inflammatory joint diseases. Monocyte chemotactic protein-1 (MCP-1) has been shown to induce differentiation of monocytes to OC precursors, but nothing is known about the underlying mechanisms. Here, we elucidate how MCPIP, induced by MCP-1, mediates this differentiation. Knockdown of MCPIP abolished MCP-1-mediated expression of OC markers, tartrate-resistant acid phosphatase, and serine protease cathepsin K. Expression of MCPIP induced p47PHOX and its membrane translocation, reactive oxygen species formation, and induction of endoplasmic reticulum (ER) stress chaperones, up-regulation of autophagy marker, Beclin-1, and lipidation of LC3, and induction of OC markers. Inhibition of oxidative stress attenuated ER stress and autophagy, and suppressed expression of OC markers. Inhibition of ER stress by a specific inhibitor or by knockdown of IRE1 blocked autophagy and induction of OC markers. ER stress inducers, tunicamycin and thapsigargin, induced expression of OC markers. Autophagy inhibition by 3′-methyladenine, LY294002, wortmannin or by knockdown of Beclin-1 or Atg 7 inhibited MCPIP-induced expression of OC markers. These results strongly suggest that MCP-1-induced differentiation of OC precursor cells is mediated via MCPIP-induced oxidative stress that causes ER stress leading to autophagy, revealing a novel mechanistic insight into the role of MCP-1 in OCs differentiation.

Related Topics

    loading  Loading Related Articles